LCOV - code coverage report
Current view: top level - src/rdl/rdl_dynamics/include/rdl_dynamics - Contacts.hpp (source / functions) Hit Total Coverage
Test: projectcoverage.info Lines: 8 8 100.0 %
Date: 2024-12-13 18:04:46 Functions: 3 3 100.0 %
Branches: 0 0 -

           Branch data     Line data    Source code
       1                 :            : // Copyright (c) 2017 Jordan Lack <jlack1987@gmail.com>
       2                 :            : // Copyright (c) 2011-2016 Martin Felis <martin.felis@iwr.uni-heidelberg.de>
       3                 :            : // RDL - Robot Dynamics Library
       4                 :            : // Licensed under the zlib license. See LICENSE for more details.
       5                 :            : 
       6                 :            : #ifndef RDL_CONTACTS_HPP
       7                 :            : #define RDL_CONTACTS_HPP
       8                 :            : 
       9                 :            : /**
      10                 :            :  * @file Contacts.hpp
      11                 :            :  */
      12                 :            : 
      13                 :            : #include <rdl_dynamics/rdl_eigenmath.hpp>
      14                 :            : #include <rdl_dynamics/rdl_mathutils.hpp>
      15                 :            : #include <rdl_dynamics/SpatialForce.hpp>
      16                 :            : 
      17                 :            : namespace RobotDynamics
      18                 :            : {
      19                 :            : /** \page contacts_page External Contacts
      20                 :            :  *
      21                 :            :  * All functions related to contacts are specified in the \ref
      22                 :            :  * contacts_group "Contacts Module".
      23                 :            : 
      24                 :            :  * \defgroup contacts_group Contacts
      25                 :            :  *
      26                 :            :  * External contacts are handled by specification of a \link
      27                 :            :  * RobotDynamics::ConstraintSet
      28                 :            :  * ConstraintSet \endlink which contains all informations about the
      29                 :            :  * current contacts and workspace memory.
      30                 :            :  *
      31                 :            :  * Separate contacts can be specified by calling
      32                 :            :  * ConstraintSet::addConstraint(). After all constraints have been
      33                 :            :  * specified, this \link
      34                 :            :  * RobotDynamics::ConstraintSet
      35                 :            :  * ConstraintSet \endlink has to be bound to the model via
      36                 :            :  * ConstraintSet::bind(). This initializes workspace memory that is
      37                 :            :  * later used when calling one of the contact functions, such as
      38                 :            :  * ForwardDynamicsContacts() or ForwardDynamicsContactsLagrangian().
      39                 :            :  *
      40                 :            :  * The values in the vectors ConstraintSet::force and
      41                 :            :  * ConstraintSet::impulse contain the computed force or
      42                 :            :  * impulse values for each constraint when returning from one of the
      43                 :            :  * contact functions.
      44                 :            :  *
      45                 :            :  * \section solution_constraint_system Solution of the Constraint System
      46                 :            :  *
      47                 :            :  * \subsection constraint_system Linear System of the Constrained Dynamics
      48                 :            :  *
      49                 :            :  * External contacts are constraints that act on the model. To compute the
      50                 :            :  * acceleration one has to solve a linear system of the form: \f[
      51                 :            :    \left(
      52                 :            :    \begin{array}{cc}
      53                 :            :            H & G^T \\
      54                 :            :            G & 0
      55                 :            :    \end{array}
      56                 :            :    \right)
      57                 :            :    \left(
      58                 :            :    \begin{array}{c}
      59                 :            :            \ddot{q} \\
      60                 :            :           - \lambda
      61                 :            :    \end{array}
      62                 :            :    \right)
      63                 :            :    =
      64                 :            :    \left(
      65                 :            :    \begin{array}{c}
      66                 :            :            -C + \tau \\
      67                 :            :               \gamma
      68                 :            :    \end{array}
      69                 :            :    \right)
      70                 :            :  * \f] where \f$H\f$ is the joint space inertia matrix computed with the
      71                 :            :  * CompositeRigidBodyAlgorithm(), \f$G\f$ are the point jacobians of the
      72                 :            :  * contact points, \f$C\f$ the bias force (sometimes called "non-linear
      73                 :            :  * effects"), and \f$\gamma\f$ the generalized acceleration independent
      74                 :            :  * part of the contact point accelerations.
      75                 :            :  *
      76                 :            :  * \subsection collision_system Linear System of the Contact Collision
      77                 :            :  *
      78                 :            :  * Similarly to compute the response of the model to a contact gain one has
      79                 :            :  * to solve a system of the following form: \f[
      80                 :            :    \left(
      81                 :            :    \begin{array}{cc}
      82                 :            :         H & G^T \\
      83                 :            :         G & 0
      84                 :            :    \end{array}
      85                 :            :    \right)
      86                 :            :    \left(
      87                 :            :    \begin{array}{c}
      88                 :            :       \dot{q}^{+} \\
      89                 :            :           \Lambda
      90                 :            :    \end{array}
      91                 :            :    \right)
      92                 :            :    =
      93                 :            :    \left(
      94                 :            :    \begin{array}{c}
      95                 :            :       H \dot{q}^{-} \\
      96                 :            :         v^{+}
      97                 :            :    \end{array}
      98                 :            :    \right)
      99                 :            :  * \f] where \f$H\f$ is the joint space inertia matrix computed with the
     100                 :            :  * CompositeRigidBodyAlgorithm(), \f$G\f$ are the point jacobians of the
     101                 :            :  * contact points, \f$\dot{q}^{+}\f$ the generalized velocity after the
     102                 :            :  * impact, \f$\Lambda\f$ the impulses at each constraint, \f$\dot{q}^{-}\f$
     103                 :            :  * the generalized velocity before the impact, and \f$v^{+}\f$ the desired
     104                 :            :  * velocity of each constraint after the impact (known beforehand, usually
     105                 :            :  * 0). The value of \f$v^{+}\f$ can is specified via the variable
     106                 :            :  * ConstraintSet::v_plus and defaults to 0.
     107                 :            :  *
     108                 :            :  * \subsection solution_methods Solution Methods
     109                 :            :  *
     110                 :            :  * There are essentially three different approaches to solve these systems:
     111                 :            :  * -# \b Direct: solve the full system to simultaneously compute
     112                 :            :  *  \f$\ddot{q}\f$ and \f$\lambda\f$. This may be slow for large systems
     113                 :            :  *  and many constraints.
     114                 :            :  * -# \b Range-Space: solve first for \f$\lambda\f$ and then for
     115                 :            :  *  \f$\ddot{q}\f$.
     116                 :            :  * -# \b Null-Space: solve furst for \f$\ddot{q}\f$ and then for
     117                 :            :  *  \f$\lambda\f$
     118                 :            :  * The methods are the same for the contact gaints just with different
     119                 :            :  * variables on the right-hand-side.
     120                 :            :  *
     121                 :            :  * RDL provides methods for all approaches. The implementation for the
     122                 :            :  * range-space method also exploits sparsities in the joint space inertia
     123                 :            :  * matrix using a sparse structure preserving \f$L^TL\f$ decomposition as
     124                 :            :  * described in Chapter 8.5 of "Rigid Body Dynamics Algorithms".
     125                 :            :  *
     126                 :            :  * None of the methods is generally superior to the others and each has
     127                 :            :  * different trade-offs as factors such as model topology, number of
     128                 :            :  * constraints, constrained bodies, numerical stability, and performance
     129                 :            :  * vary and evaluation has to be made on a case-by-case basis.
     130                 :            :  *
     131                 :            :  * \subsection solving_constraints_dynamics Methods for Solving Constrained Dynamics
     132                 :            :  *
     133                 :            :  * RDL provides the following methods to compute the acceleration of a
     134                 :            :  * constrained system:
     135                 :            :  *
     136                 :            :  * - forwardDynamicsContactsDirect()
     137                 :            :  * - forwardDynamicsContactsRangeSpaceSparse()
     138                 :            :  * - forwardDynamicsContactsNullSpace()
     139                 :            :  *
     140                 :            :  * \subsection solving_constraints_collisions Methods for Computing Collisions
     141                 :            :  *
     142                 :            :  * RDL provides the following methods to compute the collision response on
     143                 :            :  * new contact gains:
     144                 :            :  *
     145                 :            :  * - computeContactImpulsesDirect()
     146                 :            :  * - computeContactImpulsesRangeSpaceSparse()
     147                 :            :  * - computeContactImpulsesNullSpace()
     148                 :            :  *
     149                 :            :  * @{
     150                 :            :  */
     151                 :            : 
     152                 :            : struct Model;
     153                 :            : 
     154                 :            : /** \brief Structure that contains both constraint information and workspace memory.
     155                 :            :  *
     156                 :            :  * This structure is used to reduce the amount of memory allocations that
     157                 :            :  * are needed when computing constraint forces.
     158                 :            :  *
     159                 :            :  * The ConstraintSet has to be bound to a model using ConstraintSet::bind()
     160                 :            :  * before it can be used in \link RobotDynamics::forwardDynamicsContactsDirect
     161                 :            :  * forwardDynamicsContacts \endlink.
     162                 :            :  */
     163                 :            : struct ConstraintSet
     164                 :            : {
     165                 :        438 :     ConstraintSet() : linear_solver(Math::LinearSolverColPivHouseholderQR), bound(false)
     166                 :            :     {
     167                 :        438 :     }
     168                 :            : 
     169                 :            :     /** \brief Adds a constraint to the constraint set.
     170                 :            :      *
     171                 :            :      * \param body_id the body which is affected directly by the constraint
     172                 :            :      * \param body_point the point that is constrained relative to the
     173                 :            :      * contact body
     174                 :            :      * \param world_normal the normal along the constraint acts (in base
     175                 :            :      * coordinates)
     176                 :            :      * \param constraint_name a human readable name (optional, default: NULL)
     177                 :            :      * \param normal_acceleration the acceleration of the contact along the normal
     178                 :            :      * (optional, default: 0.)
     179                 :            :      */
     180                 :            :     unsigned int addConstraint(unsigned int body_id, const Math::Vector3d& body_point, const Math::Vector3d& world_normal, const char* constraint_name = NULL,
     181                 :            :                                double normal_acceleration = 0.);
     182                 :            : 
     183                 :            :     /** \brief Copies the constraints and resets its ConstraintSet::bound
     184                 :            :      * flag.
     185                 :            :      */
     186                 :         14 :     ConstraintSet Copy()
     187                 :            :     {
     188                 :         14 :         ConstraintSet result(*this);
     189                 :            : 
     190                 :         14 :         result.bound = false;
     191                 :            : 
     192                 :         14 :         return result;
     193                 :            :     }
     194                 :            : 
     195                 :            :     /** \brief Specifies which method should be used for solving undelying linear systems.
     196                 :            :      */
     197                 :            :     void setSolver(Math::LinearSolver solver)
     198                 :            :     {
     199                 :            :         linear_solver = solver;
     200                 :            :     }
     201                 :            : 
     202                 :            :     /** \brief Initializes and allocates memory for the constraint set.
     203                 :            :      *
     204                 :            :      * This function allocates memory for temporary values and matrices that
     205                 :            :      * are required for contact force computation. Both model and constraint
     206                 :            :      * set must not be changed after a binding as the required memory is
     207                 :            :      * dependent on the model size (i.e. the number of bodies and degrees of
     208                 :            :      * freedom) and the number of constraints in the Constraint set.
     209                 :            :      *
     210                 :            :      * The values of ConstraintSet::acceleration may still be
     211                 :            :      * modified after the set is bound to the model.
     212                 :            :      */
     213                 :            :     bool bind(const Model& model);
     214                 :            : 
     215                 :            :     /** \brief Returns the number of constraints. */
     216                 :       3884 :     size_t size() const
     217                 :            :     {
     218                 :       3884 :         return acceleration.size();
     219                 :            :     }
     220                 :            : 
     221                 :            :     /** \brief Clears all variables in the constraint set. */
     222                 :            :     void clear();
     223                 :            : 
     224                 :            :     /// Method that should be used to solve internal linear systems.
     225                 :            :     Math::LinearSolver linear_solver;
     226                 :            : 
     227                 :            :     /// Whether the constraint set was bound to a model (mandatory!).
     228                 :            :     bool bound;
     229                 :            : 
     230                 :            :     std::vector<std::string> name;
     231                 :            :     std::vector<unsigned int> body;
     232                 :            :     std::vector<Math::Vector3d> point;
     233                 :            :     std::vector<Math::Vector3d> normal;
     234                 :            : 
     235                 :            :     /** Enforced accelerations of the contact points along the contact
     236                 :            :      * normal. */
     237                 :            :     Math::VectorNd acceleration;
     238                 :            : 
     239                 :            :     /** Actual constraint forces along the contact normals. */
     240                 :            :     Math::VectorNd force;
     241                 :            : 
     242                 :            :     /** Actual constraint impulses along the contact normals. */
     243                 :            :     Math::VectorNd impulse;
     244                 :            : 
     245                 :            :     /** The velocities we want to have along the contact normals after
     246                 :            :      * calling ComputeContactImpulsesLagrangian */
     247                 :            :     Math::VectorNd v_plus;
     248                 :            : 
     249                 :            :     // Variables used by the Lagrangian methods
     250                 :            : 
     251                 :            :     /// Workspace for the joint space inertia matrix.
     252                 :            :     Math::MatrixNd H;
     253                 :            : 
     254                 :            :     /// Workspace for the coriolis forces.
     255                 :            :     Math::VectorNd C;
     256                 :            : 
     257                 :            :     /// Workspace of the lower part of b.
     258                 :            :     Math::VectorNd gamma;
     259                 :            :     Math::MatrixNd G;
     260                 :            : 
     261                 :            :     /// Workspace for the Lagrangian left-hand-side matrix.
     262                 :            :     Math::MatrixNd A;
     263                 :            : 
     264                 :            :     /// Workspace for the Lagrangian right-hand-side.
     265                 :            :     Math::VectorNd b;
     266                 :            : 
     267                 :            :     /// Workspace for the Lagrangian solution.
     268                 :            :     Math::VectorNd x;
     269                 :            : 
     270                 :            :     /// Workspace for the QR decomposition of the null-space method
     271                 :            :     Eigen::HouseholderQR<Math::MatrixNd> GT_qr;
     272                 :            : 
     273                 :            :     Math::MatrixNd GT_qr_Q;
     274                 :            :     Math::MatrixNd Y;
     275                 :            :     Math::MatrixNd Z;
     276                 :            :     Math::VectorNd qddot_y;
     277                 :            :     Math::VectorNd qddot_z;
     278                 :            : 
     279                 :            :     // Variables used by the IABI methods
     280                 :            : 
     281                 :            :     /// Workspace for the Inverse Articulated-Body Inertia.
     282                 :            :     Math::MatrixNd K;
     283                 :            : 
     284                 :            :     /// Workspace for the accelerations of due to the test forces
     285                 :            :     Math::VectorNd a;
     286                 :            : 
     287                 :            :     /// Workspace for the test accelerations.
     288                 :            :     Math::VectorNd QDDot_t;
     289                 :            : 
     290                 :            :     /// Workspace for the default accelerations.
     291                 :            :     Math::VectorNd QDDot_0;
     292                 :            : 
     293                 :            :     /// Workspace for the test forces.
     294                 :            :     Math::SpatialForceV f_t;
     295                 :            : 
     296                 :            :     /// Workspace for the actual spatial forces.
     297                 :            :     Math::SpatialForceV f_ext_constraints;
     298                 :            : 
     299                 :            :     /// Workspace for the default point accelerations.
     300                 :            :     std::vector<Math::Vector3d> point_accel_0;
     301                 :            : 
     302                 :            :     /// Workspace for the bias force due to the test force
     303                 :            :     Math::SpatialForceV d_pA;
     304                 :            : 
     305                 :            :     /// Workspace for the acceleration due to the test force
     306                 :            :     std::vector<Math::SpatialVector> d_a;
     307                 :            :     Math::VectorNd d_u;
     308                 :            : 
     309                 :            :     /// Workspace for the inertia when applying constraint forces
     310                 :            :     std::vector<Math::SpatialMatrix> d_IA;
     311                 :            : 
     312                 :            :     /// Workspace when applying constraint forces
     313                 :            :     std::vector<Math::SpatialVector> d_U;
     314                 :            : 
     315                 :            :     /// Workspace when applying constraint forces
     316                 :            :     Math::VectorNd d_d;
     317                 :            : 
     318                 :            :     std::vector<Math::Vector3d> d_multdof3_u;
     319                 :            : };
     320                 :            : 
     321                 :            : /** @brief Computes the Jacobian for the given ConstraintSet
     322                 :            :  *
     323                 :            :  * @param model the model
     324                 :            :  * @param Q     the generalized positions of the joints
     325                 :            :  * @param CS    the constraint set for which the Jacobian should be computed
     326                 :            :  * @param G     (output) matrix where the output will be stored in
     327                 :            :  * @param update_kinematics whether the kinematics of the model should be * updated from Q
     328                 :            :  */
     329                 :            : void calcContactJacobian(Model& model, const Math::VectorNd& Q, const ConstraintSet& CS, Math::MatrixNd& G, bool update_kinematics = true);
     330                 :            : 
     331                 :            : void calcContactSystemVariables(Model& model, const Math::VectorNd& Q, const Math::VectorNd& QDot, const Math::VectorNd& Tau, ConstraintSet& CS);
     332                 :            : 
     333                 :            : /** @brief Computes forward dynamics with contact by constructing and solving the full lagrangian equation
     334                 :            :  *
     335                 :            :  * This method builds and solves the linear system \f[
     336                 :            :    \left(
     337                 :            :    \begin{array}{cc}
     338                 :            :            H & G^T \\
     339                 :            :            G & 0
     340                 :            :    \end{array}
     341                 :            :    \right)
     342                 :            :    \left(
     343                 :            :    \begin{array}{c}
     344                 :            :            \ddot{q} \\
     345                 :            :           -\lambda
     346                 :            :    \end{array}
     347                 :            :    \right)
     348                 :            :    =
     349                 :            :    \left(
     350                 :            :    \begin{array}{c}
     351                 :            :            -C + \tau \\
     352                 :            :             \gamma
     353                 :            :    \end{array}
     354                 :            :    \right)
     355                 :            :  * \f] where \f$H\f$ is the joint space inertia matrix computed with the
     356                 :            :  * CompositeRigidBodyAlgorithm(), \f$G\f$ are the point jacobians of the
     357                 :            :  * contact points, \f$C\f$ the bias force (sometimes called "non-linear
     358                 :            :  * effects"), and \f$\gamma\f$ the generalized acceleration independent
     359                 :            :  * part of the contact point accelerations.
     360                 :            :  *
     361                 :            :  * @note So far, only constraints acting along cartesian coordinate axes
     362                 :            :  * are allowed (i.e. (1, 0, 0), (0, 1, 0), and (0, 0, 1)). Also, one must
     363                 :            :  * not specify redundant constraints!
     364                 :            :  *
     365                 :            :  * @par
     366                 :            :  *
     367                 :            :  * @note To increase performance group constraints body and pointwise such
     368                 :            :  * that constraints acting on the same body point are sequentially in
     369                 :            :  * ConstraintSet. This can save computation of point jacobians \f$G\f$.
     370                 :            :  *
     371                 :            :  * @param model rigid body model
     372                 :            :  * @param Q     state vector of the internal joints
     373                 :            :  * @param QDot  velocity vector of the internal joints
     374                 :            :  * @param Tau   actuations of the internal joints
     375                 :            :  * @param CS    the description of all acting constraints
     376                 :            :  * @param QDDot accelerations of the internals joints (output)
     377                 :            :  *
     378                 :            :  * @note During execution of this function values such as
     379                 :            :  * ConstraintSet::force get modified and will contain the value
     380                 :            :  * of the force acting along the normal.
     381                 :            :  *
     382                 :            :  */
     383                 :            : void forwardDynamicsContactsDirect(Model& model, const Math::VectorNd& Q, const Math::VectorNd& QDot, const Math::VectorNd& Tau, ConstraintSet& CS,
     384                 :            :                                    Math::VectorNd& QDDot);
     385                 :            : 
     386                 :            : void forwardDynamicsContactsRangeSpaceSparse(Model& model, const Math::VectorNd& Q, const Math::VectorNd& QDot, const Math::VectorNd& Tau, ConstraintSet& CS,
     387                 :            :                                              Math::VectorNd& QDDot);
     388                 :            : 
     389                 :            : void forwardDynamicsContactsNullSpace(Model& model, const Math::VectorNd& Q, const Math::VectorNd& QDot, const Math::VectorNd& Tau, ConstraintSet& CS,
     390                 :            :                                       Math::VectorNd& QDDot);
     391                 :            : 
     392                 :            : /** @brief Computes forward dynamics that accounts for active contacts in ConstraintSet.
     393                 :            :  *
     394                 :            :  * The method used here is the one described by Kokkevis and Metaxas in the
     395                 :            :  * Paper "Practical Physics for Articulated Characters", Game Developers
     396                 :            :  * Conference, 2004.
     397                 :            :  *
     398                 :            :  * It does this by recursively computing the inverse articulated-body inertia (IABI)
     399                 :            :    \f[
     400                 :            :    \left(
     401                 :            :    \begin{array}{c}
     402                 :            :            \dot{v}_1 \\
     403                 :            :                  \dot{v}_2 \\
     404                 :            :                  \vdots \\
     405                 :            :                  \dot{v}_n
     406                 :            :    \end{array}
     407                 :            :    \right)
     408                 :            :    =
     409                 :            :    \left(
     410                 :            :    \begin{array}{cccc}
     411                 :            :            \Phi_{1,1} & \Phi_{1,2} & \cdots & \Phi{1,n} \\
     412                 :            :            \Phi_{2,1} & \Phi_{2,2} & \cdots & \Phi{2,n} \\
     413                 :            :            \cdots & \cdots & \cdots & \vdots \\
     414                 :            :            \Phi_{n,1} & \Phi_{n,2} & \cdots & \Phi{n,n}
     415                 :            :    \end{array}
     416                 :            :    \right)
     417                 :            :    \left(
     418                 :            :    \begin{array}{c}
     419                 :            :            f_1 \\
     420                 :            :                  f_2 \\
     421                 :            :                  \vdots \\
     422                 :            :                  f_n
     423                 :            :    \end{array}
     424                 :            :    \right)
     425                 :            :  +
     426                 :            :    \left(
     427                 :            :    \begin{array}{c}
     428                 :            :          \phi_1 \\
     429                 :            :          \phi_2 \\
     430                 :            :          \vdots \\
     431                 :            :          \phi_n
     432                 :            :    \end{array}
     433                 :            :    \right).
     434                 :            :    \f]
     435                 :            :  * \f$\Phi_{i,j}\f$ which is then used to build and solve a system of the form:
     436                 :            :    Here \f$n\f$ is the number of constraints and the method for building the system
     437                 :            :    uses the Articulated Body Algorithm to efficiently compute entries of the system. The
     438                 :            :    values \f$\dot{v}_i\f$ are the constraint accelerations, \f$f_i\f$ the constraint forces,
     439                 :            :    and \f$\phi_i\f$ are the constraint bias forces.
     440                 :            :  *
     441                 :            :  * @param model rigid body model
     442                 :            :  * @param Q     state vector of the internal joints
     443                 :            :  * @param QDot  velocity vector of the internal joints
     444                 :            :  * @param Tau   actuations of the internal joints
     445                 :            :  * @param CS a list of all contact points
     446                 :            :  * @param QDDot accelerations of the internals joints (output)
     447                 :            :  *
     448                 :            :  * @note During execution of this function values such as
     449                 :            :  * ConstraintSet::force get modified and will contain the value
     450                 :            :  * of the force acting along the normal.
     451                 :            :  *
     452                 :            :  * @todo Allow for external forces
     453                 :            :  */
     454                 :            : void forwardDynamicsContactsKokkevis(Model& model, const Math::VectorNd& Q, const Math::VectorNd& QDot, const Math::VectorNd& Tau, ConstraintSet& CS,
     455                 :            :                                      Math::VectorNd& QDDot);
     456                 :            : 
     457                 :            : /** @brief Computes contact gain by constructing and solving the full lagrangian equation
     458                 :            :  *
     459                 :            :  * This method builds and solves the linear system \f[
     460                 :            :    \left(
     461                 :            :    \begin{array}{cc}
     462                 :            :            H & G^T \\
     463                 :            :                  G & 0
     464                 :            :    \end{array}
     465                 :            :    \right)
     466                 :            :    \left(
     467                 :            :    \begin{array}{c}
     468                 :            :            \dot{q}^{+} \\
     469                 :            :                  \Lambda
     470                 :            :    \end{array}
     471                 :            :    \right)
     472                 :            :    =
     473                 :            :    \left(
     474                 :            :    \begin{array}{c}
     475                 :            :            H \dot{q}^{-} \\
     476                 :            :                 v^{+}
     477                 :            :    \end{array}
     478                 :            :    \right)
     479                 :            :  * \f] where \f$H\f$ is the joint space inertia matrix computed with the
     480                 :            :  * CompositeRigidBodyAlgorithm(), \f$G\f$ are the point jacobians of the
     481                 :            :  * contact points, \f$\dot{q}^{+}\f$ the generalized velocity after the
     482                 :            :  * impact, \f$\Lambda\f$ the impulses at each constraint, \f$\dot{q}^{-}\f$
     483                 :            :  * the generalized velocity before the impact, and \f$v^{+}\f$ the desired
     484                 :            :  * velocity of each constraint after the impact (known beforehand, usually
     485                 :            :  * 0). The value of \f$v^{+}\f$ can is specified via the variable
     486                 :            :  * ConstraintSet::v_plus and defaults to 0.
     487                 :            :  *
     488                 :            :  * @note So far, only constraints acting along cartesian coordinate axes
     489                 :            :  * are allowed (i.e. (1, 0, 0), (0, 1, 0), and (0, 0, 1)). Also, one must
     490                 :            :  * not specify redundant constraints!
     491                 :            :  *
     492                 :            :  * @par
     493                 :            :  *
     494                 :            :  * @note To increase performance group constraints body and pointwise such
     495                 :            :  * that constraints acting on the same body point are sequentially in
     496                 :            :  * ConstraintSet. This can save computation of point Jacobians \f$G\f$.
     497                 :            :  * @param model rigid body model
     498                 :            :  * @param Q     state vector of the internal joints
     499                 :            :  * @param QDotMinus  velocity vector of the internal joints before the impact
     500                 :            :  * @param CS the set of active constraints
     501                 :            :  * @param QDotPlus velocities of the internals joints after the impact (output)
     502                 :            :  */
     503                 :            : void computeContactImpulsesDirect(Model& model, const Math::VectorNd& Q, const Math::VectorNd& QDotMinus, ConstraintSet& CS, Math::VectorNd& QDotPlus);
     504                 :            : 
     505                 :            : /** @brief Resolves contact gain using solveContactSystemRangeSpaceSparse()
     506                 :            :  */
     507                 :            : void computeContactImpulsesRangeSpaceSparse(Model& model, const Math::VectorNd& Q, const Math::VectorNd& QDotMinus, ConstraintSet& CS, Math::VectorNd& QDotPlus);
     508                 :            : 
     509                 :            : /** @brief Resolves contact gain using solveContactSystemNullSpace()
     510                 :            :  */
     511                 :            : void computeContactImpulsesNullSpace(Model& model, const Math::VectorNd& Q, const Math::VectorNd& QDotMinus, ConstraintSet& CS, Math::VectorNd& QDotPlus);
     512                 :            : 
     513                 :            : /** @brief Solves the full contact system directly, i.e. simultaneously for contact forces and joint accelerations.
     514                 :            :  *
     515                 :            :  * This solves a \f$ (n_\textit{dof} +
     516                 :            :  * n_c) \times (n_\textit{dof} + n_c\f$ linear system.
     517                 :            :  *
     518                 :            :  * @param H the joint space inertia matrix
     519                 :            :  * @param G the constraint jacobian
     520                 :            :  * @param c the \f$ \mathbb{R}^{n_\textit{dof}}\f$ vector of the upper part of the right hand side of the system
     521                 :            :  * @param gamma the \f$ \mathbb{R}^{n_c}\f$ vector of the lower part of the right hand side of the system
     522                 :            :  * @param qddot result: joint accelerations
     523                 :            :  * @param lambda result: constraint forces
     524                 :            :  * @param A work-space for the matrix of the linear system
     525                 :            :  * @param b work-space for the right-hand-side of the linear system
     526                 :            :  * @param x work-space for the solution of the linear system
     527                 :            :  * @param linear_solver of solver that should be used to solve the system
     528                 :            :  */
     529                 :            : void solveContactSystemDirect(Math::MatrixNd& H, const Math::MatrixNd& G, const Math::VectorNd& c, const Math::VectorNd& gamma, Math::VectorNd& qddot,
     530                 :            :                               Math::VectorNd& lambda, Math::MatrixNd& A, Math::VectorNd& b, Math::VectorNd& x, Math::LinearSolver& linear_solver);
     531                 :            : 
     532                 :            : /** @brief Solves the contact system by first solving for the the joint accelerations and then the contact forces using a
     533                 :            :    sparse matrix decomposition of the joint space inertia matrix.
     534                 :            :  *
     535                 :            :  * This method exploits the branch-induced sparsity by the structure
     536                 :            :  * preserving \f$L^TL \f$ decomposition described in RDL, Section 6.5.
     537                 :            :  *
     538                 :            :  * @param model
     539                 :            :  * @param H the joint space inertia matrix
     540                 :            :  * @param G the constraint jacobian
     541                 :            :  * @param c the \f$ \mathbb{R}^{n_\textit{dof}}\f$ vector of the upper part of the right hand side of the system
     542                 :            :  * @param gamma the \f$ \mathbb{R}^{n_c}\f$ vector of the lower part of the right hand side of the system
     543                 :            :  * @param qddot result: joint accelerations
     544                 :            :  * @param lambda result: constraint forces
     545                 :            :  * @param K work-space for the matrix of the constraint force linear system
     546                 :            :  * @param a work-space for the right-hand-side of the constraint force linear system
     547                 :            :  * @param linear_solver type of solver that should be used to solve the constraint force system
     548                 :            :  */
     549                 :            : void solveContactSystemRangeSpaceSparse(Model& model, Math::MatrixNd& H, const Math::MatrixNd& G, const Math::VectorNd& c, const Math::VectorNd& gamma,
     550                 :            :                                         Math::VectorNd& qddot, Math::VectorNd& lambda, Math::MatrixNd& K, Math::VectorNd& a, Math::LinearSolver linear_solver);
     551                 :            : 
     552                 :            : /** @brief Solves the contact system by first solving for the joint accelerations and then for the constraint forces.
     553                 :            :  *
     554                 :            :  * This methods requires a \f$n_\textit{dof} \times n_\textit{dof}\f$
     555                 :            :  * matrix of the form \f$\left[ \ Y \ | Z \ \right]\f$ with the property
     556                 :            :  * \f$GZ = 0\f$ that can be computed using a QR decomposition (e.g. see
     557                 :            :  * code for ForwardDynamicsContactsNullSpace()).
     558                 :            :  *
     559                 :            :  * @param H the joint space inertia matrix
     560                 :            :  * @param G the constraint jacobian
     561                 :            :  * @param c the \f$ \mathbb{R}^{n_\textit{dof}}\f$ vector of the upper part of the right hand side of the system
     562                 :            :  * @param gamma the \f$ \mathbb{R}^{n_c}\f$ vector of the lower part of the right hand side of the system
     563                 :            :  * @param qddot result: joint accelerations
     564                 :            :  * @param lambda result: constraint forces
     565                 :            :  * @param Y basis for the range-space of the constraints
     566                 :            :  * @param Z basis for the null-space of the constraints
     567                 :            :  * @param qddot_y work-space of size \f$\mathbb{R}^{n_\textit{dof}}\f$
     568                 :            :  * @param qddot_z work-space of size \f$\mathbb{R}^{n_\textit{dof}}\f$
     569                 :            :  * @param linear_solver type of solver that should be used to solve the system
     570                 :            :  */
     571                 :            : void solveContactSystemNullSpace(Math::MatrixNd& H, const Math::MatrixNd& G, const Math::VectorNd& c, const Math::VectorNd& gamma, Math::VectorNd& qddot,
     572                 :            :                                  Math::VectorNd& lambda, Math::MatrixNd& Y, Math::MatrixNd& Z, Math::VectorNd& qddot_y, Math::VectorNd& qddot_z,
     573                 :            :                                  Math::LinearSolver& linear_solver);
     574                 :            : 
     575                 :            : /** @} */
     576                 :            : } /* namespace RobotDynamics */
     577                 :            : 
     578                 :            : /* RDL_CONTACTS_H */
     579                 :            : #endif  // ifndef RDL_CONTACTS_H

Generated by: LCOV version 1.14