#include <rdl_eigenmath.hpp>
|
typedef Eigen::Matrix3d | Base |
|
|
template<typename OtherDerived > |
| Matrix3d (const Eigen::MatrixBase< OtherDerived > &other) |
|
| Matrix3d (const Quaternion &o) |
|
| Matrix3d (const AxisAngle &a) |
|
template<typename OtherDerived > |
Matrix3d & | operator= (const Eigen::MatrixBase< OtherDerived > &other) |
|
EIGEN_STRONG_INLINE | Matrix3d () |
|
EIGEN_STRONG_INLINE | Matrix3d (const double &m00, const double &m01, const double &m02, const double &m10, const double &m11, const double &m12, const double &m20, const double &m21, const double &m22) |
|
Vector3d | toIntrinsicZYXAngles (double yaw_at_pitch_singularity=0.) const |
| Convert rotation matrix to intrinsic ZYX euler angles. More...
|
|
◆ Base
◆ Matrix3d() [1/5]
template<typename OtherDerived >
RobotDynamics::Math::Matrix3d::Matrix3d |
( |
const Eigen::MatrixBase< OtherDerived > & |
other | ) |
|
|
inline |
◆ Matrix3d() [2/5]
RobotDynamics::Math::Matrix3d::Matrix3d |
( |
const Quaternion & |
o | ) |
|
◆ Matrix3d() [3/5]
RobotDynamics::Math::Matrix3d::Matrix3d |
( |
const AxisAngle & |
a | ) |
|
|
inline |
◆ Matrix3d() [4/5]
EIGEN_STRONG_INLINE RobotDynamics::Math::Matrix3d::Matrix3d |
( |
| ) |
|
|
inline |
◆ Matrix3d() [5/5]
EIGEN_STRONG_INLINE RobotDynamics::Math::Matrix3d::Matrix3d |
( |
const double & |
m00, |
|
|
const double & |
m01, |
|
|
const double & |
m02, |
|
|
const double & |
m10, |
|
|
const double & |
m11, |
|
|
const double & |
m12, |
|
|
const double & |
m20, |
|
|
const double & |
m21, |
|
|
const double & |
m22 |
|
) |
| |
|
inline |
◆ operator=()
template<typename OtherDerived >
Matrix3d& RobotDynamics::Math::Matrix3d::operator= |
( |
const Eigen::MatrixBase< OtherDerived > & |
other | ) |
|
|
inline |
◆ toIntrinsicZYXAngles()
Vector3d RobotDynamics::Math::Matrix3d::toIntrinsicZYXAngles |
( |
double |
yaw_at_pitch_singularity = 0. | ) |
const |
Convert rotation matrix to intrinsic ZYX euler angles.
- Parameters
-
m | Rotation matrix to convert |
yaw_at_pitch_singularity | At Y = +- PI/2 is a singularity in which there are multiple solutions. This will be the yaw value in the output and the roll value is dependent on this. To get the most accurate results at singularity, provide this value as close as possible to desired/reality and the resulting roll value will be near the expected |
The documentation for this class was generated from the following files: